Role of Resonance Energy Transfer in Light Harvesting of Zinc Oxide-Based Dye-Sensitized Solar Cells
نویسندگان
چکیده
In this contribution we have studied the dynamics of light harvesting of ZnO nanoparticles (NPs) to a surface adsorbed sensitizing dye (SD) N719. By using the picosecond resolved Förster resonance energy transfer (FRET) technique we have explored that the excited ZnO NPs resonantly transfer visible optical radiation to the SD N719. The consequence of the energy transfer on the performance of the overall efficiency of a model ZnO NP-based dye-sensitized solar cell (DSSC) has also been explored. We have demonstrated that the overall efficiency of a ZnO NP-based solar cell significantly depends on the presence of high-energy photons in the solar radiation. In a control experiment on a model TiO2 NP-based solar cell it has been demonstrated that the presence of high-energy photon has a minimal effect on the performance of the cell as the TiO2 NPs are incapable of harvesting high-energy photons from solar radiation. The possibility of the back electron transfer from the excited NPs to the SD has also been investigated by studying the NPs in the presence of an ideal electron accepting organic molecule, benzoquinone (BQ). The time constants and nonradiative rate constant obtained for the ZnO/N719 system are found to be different from those of the ZnO/BQ system, which rules out the possibility of back electron transfer from ZnO NPs to SD N719. Moreover, the observed FRET dynamics in the light harvesting process of the nanocrystalites may be efficient in the further use of the nanoparticles in the development of new photodevices.
منابع مشابه
Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
متن کاملThe investigation on different light harvesting layers and their sufficient effect on the photovoltaic characteristics in dye sensitized solar cell
Titanium dioxide-based nanofibers (TiO2 nanofiber) were prepared by an electrospinning technique. The electrospun composite fibers were synthesized at different concentrations of titanium isopropoxide (25.35, 50.69, 76.05 wt%) and calcinated at different temperatures (450 oC, 650 oC and 850 oC) for 2 h. The diameters of nanofibers decreased by increas...
متن کاملIncorporating multiple energy relay dyes in liquid dye-sensitized solar cells.
Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from t...
متن کاملInvestigation of Indigo/thioindigo Tandem Dye-Sensitized Solar Cells
In this paper we used two free-metal organic dyes (dye 1 and dye 2) based on indigo and thioindigo with cyanoacrylic acid as the electron acceptor group. The proposed dyes were sensitized from naphalene as the starting material by standard reactions and characterized by different analytical techniques and UV-Visible spectroscopy after purification. Spectrophotometric measurements of the organic...
متن کاملEnergy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
Cosensitization of broadly absorbing ruthenium metal complex dyes with highly absorptive near-infrared (NIR) organic dyes is a clear pathway to increase near-infrared light harvesting in liquid-based dye-sensitized solar cells (DSCs). In cosensitized DSCs, dyes are intimately mixed, and intermolecular charge and energy transfer processes play an important role in device performance. Here, we de...
متن کامل